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Kinetic effects on the stability properties of

field-reversed configurations: II. Nonlinear evolution

Elena V. Belova, Ronald C. Davidson, Hantao Ji, Masaaki Yamada

Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

Abstract

Results of three-dimensional hybrid simulations of the field-reversed configuration (FRC) are

presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD)

instabilities in kinetic FRCs. A wide range of̄s values is considered, where thes̄ is the FRC

kinetic parameter, which measures the number of ion gyroradii in the configuration. The linear and

nonlinear stability of MHD modes with toroidal mode numbersn ≥ 1 is investigated, including

the effects of ion rotation, finite electron pressure, and weak toroidal field. Low-s̄ simulations

show nonlinear saturation of then = 1 tilt mode. Then ≥ 2 rotational modes are observed to

grow during the nonlinear phase of the tilt instability due to ion spin-up in the toroidal direction.

Large-̄s simulations show no saturation of the tilt mode, and there is a slow nonlinear evolution of

the instability after the initial fast linear growth. Overall, the hybrid simulations demonstrate the

importance of nonlinear effects, which are responsible for the saturation of instabilities in low-s̄

configurations, and also for the increase in FRC life-time compared to MHD models in high-s̄

configurations.
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I. INTRODUCTION

Stability properties of the field-reversed configuration (FRC) have remained a mystery for

many years, because the predictions of magnetohydrodynamic (MHD) theory and nonlinear MHD

simulations have been in contradiction with experimental observations. Experimental FRCs were

observed to suffer then = 2 rotational instability, which was eventually suppressed by the appli-

cation of weak multipole magnetic fields after FRC formation1,2. Then = 2 rotational mode is

the only experimentally observed global mode, which often prematurely terminates the FRC1,3.

Then = 1 tilt mode, which has been theoretically shown to be strongly unstable within an MHD

model, and which is considered to be the most dangerous global mode in the prolate FRC, has

not been observed, or it has been seen to “decay away” (in low-s̄ cases) without destroying the

configuration3–5. Significant efforts has been made to include various kinetic effects in theoretical

models in order to explain the observed FRC stability properties6–15. Linear kinetic calculations

have shown a reduction in instability growth rate for smalls̄ due to finite Larmor radius (FLR)

stabilization. However, the growth rate reduction was not large enough to explain the experimental

results13–15. Other effects have been suggested to further reduce the linear growth rates, in par-

ticular the Hall effect, equilibrium toroidal fields, sheared flows, and kinetic electron effects9–11.

Although more complete models could still provide a stronger reduction in growth rate, the FRC

stability issue is far from resolved.

Initial nonlinear simulations, on the other hand, discovered that then = 1 tilt instability can

saturate nonlinearly in the low-s̄ regime16. These results suggest that FRC stability properties can

be explained provided a combination of kinetic and nonlinear effects is considered. A companion

paper13 concentrated on linear stability properties, including kinetic and profile effects. Here, the

nonlinear evolution of then = 1 tilt mode and higher-n modes in prolate FRCs is investigated
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using a hybrid and MHD simulation code HYM13,14. Nonlinear simulations for small̄s values

(s̄ ∼< 2) and relatively largēs values (̄s ∼ 7) are performed, and the effects of ion spin-up and

particle loss along the open field lines are studied. The nonlinear saturation of then = 1 tilt mode,

and the growth of then ≥ 2 rotational modes are discussed. In addition, the effects of finite

electron pressure and weak toroidal field on FRC stability properties are studied, as well as FLR

stabilization of then > 1 MHD modes in a non-rotating FRC.

The FRC parameters used throughout this paper are defined as follows: the separatrix elon-

gation is the ratio of the separatrix half-length to its radius,E = Zs/Rs; the kinetic parameter,

S∗ = Rs/λi, is the ratio of the separatrix radius to the ion skin depth, based on the maximum

density,n0; another useful kinetic parameters̄ is defined bȳs =
∫ Rs
R0

r/(Rsρi) dr, whereR0 is the

magnetic null radius, andρi is the local ion Larmor radius. The parameters̄ is approximately equal

to the number of ion Larmor radii between the magnetic null and the separatrix. The two kinetic

parameters,S∗ and s̄ correspond to different physical stabilizing mechanisms, namely, the Hall

term and FLR stabilization, respectively. However, their values are related through the pressure

balance condition in cases where the electron pressure can be neglected. The characteristic Alfv´en

velocity VA is computed using the external field,Bext, and the maximum density; and the Alfv´en

time is defined astA = Rc/VA, whereRc is the radius of the flux conserving shell.

II. NUMERICAL MODEL

The numerical scheme implemented in HYM code has been described elsewhere14. The re-

sults presented in the present paper have been obtained using the hybrid version of the HYM code,

in which the electrons are described as a fluid, and a fully kinetic (particle) description is used for

the ions. The basic equations are
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∂B

∂t
= −c∇×E, (1)

E = −ve ×B/c−∇pe/ene + ηJ, (2)

J = c/4π∇×B, (3)

ve = −(J− Ji)/ene, (4)

∂pe

∂t
+ γpe(∇ · ve) + ve · ∇pe = η(γ − 1)J2, (5)

where electron inertia effects and the displacement current are neglected, and quasineutralityne =

ni is assumed. The ion density and current density are calculated from the distribution of the

simulation particles, which follow the ions trajectories calculated using the Lorenz-force equations

dx

dt
= v, (6)

dv

dt
=

qi

mi

(E− ηJ + v ×B/c) . (7)

The delta-f particle simulation method17 is employed in order to reduce the numerical noise level.

In the delta-f method, the equilibrium ion distribution functionf0 is assumed to be known an-

alytically, and the perturbed distribution functionδf = f − f0 is integrated along the particle

trajectories in Eqs.(6) and (7). Each simulation particle is assigned a weightw = δf/g, which is

evolved in time according to

dw

dt
= −

(
f

g
− w

)
d

dt
ln f0. (8)

Hereg is distribution function of simulation (marker) particles, which can be chosen to be the

same asf , but in generalg 6= f . Equation (8) follows from the conservation off andg along the

particle trajectories. The numerical noise is reduced in this scheme, because the equilibrium part

of moments of the distribution function is calculated analytically using the knownf0, and particle

weights are used to calculate only the perturbed values according to
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ni = n0 + δni = n0 +
∑
m

wmS(x− xm) (9)

Ji = Ji0 + δJi = Ji0 +
∑
m

wmvmS(x− xm), (10)

where the sum is over simulation particle indices, andS(x) is a shape function (linear).

The delta-f method, as given by Eqs. (9) and (10), provides a reduction of numerical noise

by a factor of|δf/f |2 compared to conventional particle-in-cell (PIC) simulations. Therefore, this

method, although fully nonlinear, is most effective when the perturbation amplitude is relatively

small, so that|w| � 1. Modification of this scheme is needed if the perturbations are allowed to

grow to large amplitudes withδf ∼ O(1), in order to assure accuracy of the numerical results.

A modified scheme has been developed, which allows us to switch dynamically from the delta-f

method to the regular (i.e. full-f) PIC method, as the perturbation amplitude becomes large. A

detailed description of the modified numerical scheme is given in Appendix A.

In this paper, equilibria with zero initial ion rotation have been considered. The equilibrium

ion distribution function is taken to bef0 = A exp(−ε/T0), whereε = miv
2/2 + qiϕ0 is the

particle energy,ϕ0 is the equilibrium electrostatic potential, andT0 is the uniform ion temperature.

The equilibrium current is assumed to be carried by the electrons, and the force balance condition

is qiniE0 = ∇pi. The nonlinear simulations have been performed with a cylindrical grid size

of 50 × 32 × 60 in (r, φ, z) using 4 · 106 simulation particles. Perfectly conducting boundary

conditions are applied at the radial boundaries, and periodic boundary conditions are used in the

axial direction. The region outside the separatrix (open field lines) is modeled as a low-density,

high-resistivity plasma.

III. STABILITY PROPERTIES OF n = 1 − 3 MHD MODES

Most previous linear studies have concentrated on then = 1 tilt mode stability properties, and
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considered simple FRC models which neglect, in particular, the effects of the electron pressure and

toroidal fields. In this section, these effects are included in the tilt mode stability calculations, and

the kinetic stabilization of the highern modes is investigated.

In the previous paper13, it was demonstrated that ion FLR effects provide a major stabilization

mechanism for then = 1 tilt mode in prolate FRCs. A significant reduction of the growth rate for

long, elliptical configurations was found, with the approximate scaling

γ = C
VA

RsE
exp

(
−3E

ρi

Rs

)
, (11)

which has been obtained from a fit to numerical results for FRC configurations with E=4, 6.25 and

11.6. Here,γmhd = CVA/RsE is the growth rate of the tilt mode in the MHD model,ρi is ion

thermal Larmor radius in the external field, andC ≈ 2 is a constant. The exponential factor in

Eq. (11) is due to FLR effects, and the reduction of the linear growth rate depends on the product

Eρi ∼ E/s̄. Therefore, for a given value of̄s, the growth rate reduction is stronger for more

elongated configurations. The empirical scaling in Eq. (11) is violated in highly kinetic cases with

Eρi/Rs ∼> 0.5− 1, when resonant particle effects become important13.

The significance of the ion FLR effects is also seen in linear hybrid simulations with finite

electron pressure or finite equilibrium toroidal field. In both cases the growth rate of the tilt mode

increases due to the effective reduction of the ion FLR stabilization. Figure 1 (thick line) shows the

normalized growth rates of the tilt instability calculated for a fixed-size elliptical configuration with

E = 6.25 andS∗ = 10, in which the fraction of the total pressure carried by the electrons has been

varied betweenPe = 0 andPe = 0.875P (for a given total pressure, this corresponds to a reduction

of the ion temperature by a factor of 8). For comparison, the dependence of growth rateγ on the

1/s̄ parameter is plotted for FRCs withPe = 0 (thin line), and a dashed line shows the empirical
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FLR scaling in Eq. (11). It can be seen that the reduction of the ion thermal Larmor radius in

the finitePe cases accounts for an increase in the tilt mode growth rate. Larger electron pressure

can also significantly modify the real frequency of the mode. However for most experimental

conditionsPe ∼< 0.5Pi, and this effect can be neglected.

A weak toroidal magnetic field with magnitude 0.1-0.3 times the external field has also been

found to increase the tilt instability growth rates. Such fields can be present in experimental FRCs,

and have been considered as a possible stabilizing factor. However, our simulations with a sym-

metric (spheromak-like)Bφ profile, elongationE = 6, andS∗ = 20 show an increase of the

instability growth rate. For example, forBφ = 0.2Bext (at the magnetic axis) the growth rate is

increased by a factor of 1.4. This destabilization is related to the reduction of the volume-averaged

ion Larmor radius, which appears to be the most significant consequence of adding a weak toroidal

magnetic field in the FRC. Note that the value of plasma beta at the magnetic axis in this case is

still very largeβ ∼ 25, which implies that the plasma dynamics cannot be strongly modified by

the toroidal field.

Stability properties of then = 2 andn = 3 modes have been studied for FRC equilibria

with E = 6.25 and elliptical separatrix shape. A set of linearized hybrid simulations have been

performed for each toroidal mode number and various values of the kinetic parameters̄. Unlike

previousn = 2 rotational instability studies18, zero equilibrium ion rotation has been assumed.

Results of the linear stability study are summarized in Fig. 2a, where the normalized growth rates

are plotted as a function of1/s̄, andγ0 = VA/Zs. For these equilibria, the most unstablen = 2

andn = 3 modes are the co-interchange modes with axial polarization. In the ideal MHD limit,

these modes are more unstable than then = 1 tilt mode. However, FLR effects strongly reduce

the growth rates of then ≥ 2 modes, which are stabilized ats̄ = 1.2 (n = 2 mode) and̄s = 2.4
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(n = 3 mode), respectively. Figure 2a shows that in the kinetic FRC, then = 1 tilt mode is the

most unstable mode even for intermediate values ofs̄, i.e., fors̄ ∼< 10 (S∗ ∼< 80).

Finite Larmor radius effects change the structure of the most unstable modes withn =2 and

3 compared with the MHD model. In the MHD model, these modes are axially polarized kink-like

modes, which have maximum amplitude near the magnetic null. In the kinetic FRC model, the

mode amplitude is reduced in the vicinity of the magnetic null, where FLR stabilization is the

strongest. The example of the linear structure of then = 2 mode fors̄ = 4.7 is shown in Figs. 2b

and 2c. The unstablen = 3 mode has a very similar structure, except then = 3 mode has a smaller

radial extent.

Finite Larmor radius effects on MHD modes other than then = 1 mode have been inves-

tigated by Iwasawaet al.15 using a linear gyroviscous model for relatively large azimuthal mode

numbersn =10 and 30. In general agreement with our hybrid simulation results, they find that

FLR stabilization of the higher-n modes is significantly more effective than that of then = 1

tilt mode. However, one should note that the FLR-fluid approach relies on an expansion with

k⊥ρi < 1, which is not valid forn ≥ 10 modes in the kinetic regime whenS∗ ∼< 30 (s̄ ∼< 4).

IV. NONLINEAR SIMULATIONS AT LOW s̄

A. Ion spin-up

Nonlinear hybrid simulations have been performed for two sets of equilibrium configurations

with E = 4 andE = 6.25, elliptical separatrix shapes, and a range of kinetic parameter values:

s̄ = 1.2− 2.4. In the initial configuration, all of the equilibrium current is carried by the electrons,

and the ions have a nonrotating Maxwellian distribution, which is consistent with experimental

conditions just after FRC formation. However, as the simulation proceeds, the ions gradually
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begin to rotate toroidally, and near the end of the simulation run (t ∼ 60− 80tA) the ion spin-up is

of orderα = Vφ,i/V∗ ∼ 0.5− 1, whereV∗ = J0/en0 is value of relative drift velocity between the

ions and electrons in the initial equilibrium. (For our parameters, the corresponding drift frequency

is Ω∗ = 0.015− 0.06ωci.)

It is remarkable that similar ion spin-up is observed in theta-pinch-formed FRC experiments1;

however, the origin of the rotation may be different. Namely, the two major spin-up mechanisms

proposed to explain the experimentally observed ion rotation, that is, particle loss and end-shorting

of the electric field on open field lines, are absent in our numerical model which assumes periodic

axial boundary conditions. Numerically observed ion spin-up, at least partially, can be accounted

for by the interaction with the radial wall (due to the finite plasma density∼ 0.1n0 at the wall), and

the internal flux loss. It is possible that other effects, particularly the plasma poloidal dynamics,

contribute to the spin-up.

In the simulations, the ion rotation is localized initially near the separatrix, but gradually the

bulk of the ions inside the separatrix spins-up. At later time, the rigid-rotor-like rotation profile

forms. The midplane radial profiles and a contour plot of the ion toroidal velocity obtained in

simulations withE = 6.25 ands̄ = 2.4 at two different timest = 46tA andt = 80tA are shown

in Fig. 3. The ions inside the separatrix rotate in the positive (diamagnetic) direction, whereas the

ions on open field lines near the FRC ends rotate in the opposite direction. The maximum rotation

velocity (n = 0) is Vφ,i ∼ 0.1VA for the s̄ = 2.4 configuration. In a more kinetic FRC, with

s̄ = 1.2, the ion rotation is about twice as fast, withVφ,i ∼ 0.2VA (at t ∼ 60tA).

Aside from the details of the spin-up mechanism, the ion rotation in the nonlinear simulations

appears to describe well the experimentally observed behavior. An important consequence of the

ion spin-up is its effect on the evolution of the low-n modes in the nonlinear phase of the tilt
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instability.

B. Nonlinear evolution of then = 1 tilt mode

In agreement with the linear results in Section III, the initial phase of the simulations shows

slow (compared to the MHD) growth of then = 1 tilt mode, which remains a dominant mode until

the nonlinear phase. The dominant growth of the tilt mode has been observed in all simulation

runs performed for two sets of equilibria (withE = 6.25 andE = 4), and with different̄s values

(1.2, 1.6, and 2.4), including the simulation runs with random initial conditions.

Figure 4 shows the energy evolution of the first five toroidal modesn = 0− 4 for simulations

with E = 6.25 and s̄ = 2.4. The kinetic energy is normalized to the total magnetic energy. The

growth of then = 0 mode in Fig. 4 corresponds to the ion toroidal spin-up. Then = 1 tilt

instability grows linearly untilt ≈ 40tA, when its growth rate reduces substantially. The nonlinear

slow-down of the instability may be a result of the change of the ion distribution function and a

reduction of the instability drive13. The ion sheared rotation, which develops by that time, can also

contribute to the stabilization. An estimate of the ion rotation frequencyΩi ∼ (0.5− 1)VA/Zs at

t ∼> 60tA shows that it is of the same order as the linear growth rate of the tilt mode:Ωi ∼ γ.

Figure 4 shows that the tilt mode amplitude reaches its maximum value of|Vi|2 ∼ 4 · 10−4 at

t ≈ 60tA, and decreases subsequently. Then = 2 mode amplitude continues to grow after the

saturation of the tilt mode, but it also appears to saturate att ≈ 75tA. The amplitudes of the

higher-n modes remain significantly smaller than those of then = 1 andn = 2 modes throughout

the simulation. Numerical accuracy can be assessed from the conservation of total energy, which

shows that the variation in the total energy is less than 0.1 of the change in the magnetic energy

until t = 50tA, at which point the simulation is changed from theδf method to the conventional

PIC scheme.
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Figure 5 shows time evolution of the plasma density for the same simulations as in Fig. 4. To

take into account the mode rotation, the poloidal plane, which corresponds to the maximum of the

tilt amplitude, is shown at each time. The initial MHD-like tilting, which is seen att = 40tA, is

modified later att = 60 − 64tA before the tilting motion saturates. The resulting configuration

has a flatter density profile, and a larger separatrix beta compared to the initial configuration.

The plasma profile att ∼> 70tA is not completely axisymmetric, but rather shows an elliptical

deformation which corresponds to then = 2 mode. The vector plot of poloidal magnetic field

at t = 80tA is shown in Fig. 6. The degree of field reversal is reduced in accordance with the

increased separatrix pressure. No self-generated toroidal (n = 0) field has been observed, and the

magnitude of the toroidal component of the magnetic field is found to be small.

The nonlinear evolution of then = 1 mode in the simulations with different elongations and

s̄ values has been found to be similar to that shown in Fig. 4. However, the simulation with smaller

s̄ (s̄ = 1.2) shows a saturation amplitude of the tilt mode about four times smaller than that in

Fig. 4, perhaps due to smaller linear growth rate. In addition, the nonlinear behavior of other MHD

modes withn ≥ 2 is found to vary significantly in these simulations as discussed below.

C. Nonlinear evolution of n ≥ 2 MHD modes

Then = 2 distortions of the FRC density profile are often observed experimentally and are

usually attributed to then = 2 rotational instability2,3. Such perturbations are also seen in our

nonlinear hybrid simulations after saturation of then = 1 tilt mode instability (Fig. 7). The growth

of the higher-n modes is very likely be related to the ion toroidal spin-up and other nonlinear

effects, because, as has been shown linerly in SectionIII, the n > 1 modes are less unstable than

then = 1 tilt mode for all considered FRC equilibria. Thus, for the simulations shown in Figs. 4

and 7, the linear growth rate of then = 2 mode is about 2.5 times smaller than that of the tilt mode,
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and then = 3 mode is marginally unstable [Fig. 3(a)]. However, then = 2 mode becomes the

dominant mode in the nonlinear phase of the simulations, and the analysis of the mode structure

shows that the growing mode has mostly radial polarization, and its structure is different from that

shown in Fig. 3(b)-(c).

Other nonlinear simulations performed for lower values of the kinetic parameters̄, show the

growth of both then = 2 andn = 3 modes after the saturation of the tilt instability in the nonlinear

regime. In the simulations withE = 4 and s̄ = 1.6, for example, the amplitudes of then = 2

andn = 3 modes are comparable in the nonlinear phase. The simulation results for a case with

E = 6.25 and s̄ = 1.2 are shown in Fig. 8, where the contours of axial magnetic field in the

FRC midplane, and the surface plot of the plasma density are shown att = 68tA. The linear

analysis for this equilibrium (assuming zero ion rotation) has shown that both then = 2 andn = 3

modes are completely stabilized by FLR effects [Fig.3(a)]. However, the strongn = 3 distortion

of the plasma profiles is clearly seen in Fig. 8. The growth of then = 3 mode correlates with the

significant ion toroidal rotation, which for this configuration is of orderVφ,i ∼ 0.2VA for t > 40tA.

Note that the ion rotation frequency in this case is larger than then = 1 tilt instability growth rate

Ωi ∼> (3− 4)γ, and it is likely to have a strong stabilizing effect on the tilt mode.

The nonlinear behavior of then > 1 modes is generally similar in different simulation runs,

but the detailed nonlinear evolution of these modes is sensitive to the choice of system param-

eters, including the resistivity profile, the initial perturbation amplitude, and even the numerical

resolution. This sensitivity is due to the time evolution of the background plasma, including the

magnetic field decay and the ion spin-up, and perhaps due to the dependence of the details of the

ion toroidal spin-up on the simulation scheme. We have also found that simulations with higher

numerical noise level (i.e., a smaller number of simulation particles), usually result in lower satu-
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ration amplitudes of the unstable modes.

V. NONLINEAR SIMULATIONS AT HIGHER s̄

Hybrid simulations in the small gyroradius regime, i.e., with values ofs̄ considerably larger

than those in Section IV (i.e.̄s ∼> 7), show MHD-like linear growth of the tilt mode and no non-

linear saturation. However, the nonlinear evolution of the instability in these runs has been found

to be slower than that in similar MHD simulations. To make certain that the periodic boundary

conditions used in our runs have a negligible effect on the observed nonlinear behavior, we have

modified the numerical scheme to allow particle losses at the simulation boundaries. Two cases

have been considered, one without a mirror field at the FRC ends, and the other with a mirror

field (mirror ratio 1.5). The PIC scheme was used instead of the delta-f method to allow for par-

ticle losses. The simulations have been performed for a configuration withE = 4 and s̄ = 7.4

(S∗ ≈ 60). The linear growth rate of then = 1 tilt mode in this case is close to that of the MHD

model withγ ∼> 0.9γmhd.

Simulations performed without the mirror field show a significant loss of particles (about 30

%) during the linear phase of the instability. It is found that particle loss along the open field lines

has a destabilizing effect on then = 1 tilt mode, increasing the linear growth rate by≈10%, proba-

bly due to a reduction of plasma pressure on the open field lines. In these simulations the nonlinear

evolution of the instability is significantly slower than that in the MHD simulations. Thus, despite

the loss of about one-half of the particles, the field reversal ofBz ≈ −0.5Bext is still present by

t = 32tA. In contrast, the configuration is destroyed in∼ 15tA in the MHD simulations with the

same equilibrium parameters. Significant ion spin up in the toroidal (diamagnetic) direction is also

observed att > 20tA, with Vφ,i ≈ 0.3VA.
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Simulations performed for the same plasma parameters, but including the end mirror coils are

shown in Figs. 9 and 10. The energy plots for then = 0 − 4 modes and the change in the total

number of particles versus time are plotted in Fig. 9. These simulations show improved particle

confinement, with a total particle loss of about 25% by the end of the run. The ion toroidal spin-up

is smaller (Vφ,i ∼ 0.1VA) than in the no-mirror-field case, and almost no reversed field remains at

t = 30tA (Bz ∼< −0.1Bext).

In the high-̄s simulations, then = 1 mode is the dominant mode through the linear and

nonlinear phases of the instability. Then = 1 mode shows no nonlinear saturation, and the

amplitudes of then ≥ 2 modes remain small. The growth of then = 0 component of the ion

kinetic energy in Fig. 9(a) corresponds to the ion toroidal spin-up and also the axial motion, which

breaks the plasma into two parts after it tilts over att ≈ 15tA. This can be seen in Fig. 10,

where contours of the plasma density in the poloidal plane are shown at different times. The slow

(compared to the MHD) nonlinear evolution of the tilt mode in these hybrid simulations can be

related to the reduction of the kinetic parameters̄ in the nonlinear phase of instability (due the

partial loss of poloidal flux), and the ion toroidal spin-up. Both of these effects are absent in the

MHD model.

VI. CONCLUSIONS

The results of hybrid simulations presented in this paper offer a definitive explanation of the

stability properties observed in low-s̄ FRC experiments. It has been demonstrated that, although

then = 1 tilt mode is linearly the most unstable mode for nearly all experimentally-relevant FRC

equilibria, it saturates nonlinearly without destroying the configuration, provided the FRC kinetic

parameter,̄s, is sufficiently small. The saturation of then = 1 tilt instability occurs in the presence
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of ion toroidal rotation, and is accompanied by the growth of then ≥ 2 rotational instabilities,

which are often seen in experiments.

The saturation of then = 1 tilt instability, discovered in the low-̄s simulations, occurs due to

the nonlinear change in the ion distribution function, and the stabilizing effects of ion sheared rota-

tion and the nonlinear interaction with growingn ≥ 2 rotational modes. The unstable equilibrium

evolves nonlinearly into a new (rotating) configuration with smallers̄, largerE, and an increased

separatrix beta.

The properties of the rotational modes, observed in the nonlinear phase of the tilt instability,

are similar to those seen in FRC experiments, and they are in general agreement with previous

theoretical studies of rotational instabilities18. The growingn = 2 andn = 3 modes have the

lowest possiblek‖, and values of the rotational parameterα are of order0.5 − 1. The rotational

instabilities are found to be stronger in the smaller-s̄, more kinetic configurations. The details of

the ion toroidal spin-up determine the nonlinear evolution of these instabilities.

In summary, the hybrid simulations presented here show that, while ion FLR effects determine

the linear stability properties of non-rotating FRCs, the inclusion of nonlinear and ion toroidal flow

effects is necessary for a satisfactory description of plasma behavior in low-s̄ FRC experiments.

High-s̄ simulations show MHD-like linear growth of the tilt mode and no nonlinear saturation. The

nonlinear evolution of the instability in these runs has been found to be slower than that in similar

MHD simulations due to the nonlinear reduction of the kinetic parameters̄ and the ion toroidal

spin-up. It is also found that the particle loss along open field lines has a destabilizing effect

on the tilt mode, and contributes to the ion spin up in the toroidal direction. Additional means

of stabilization (possibly shaping, or neutral beam injection) are required to achieve stability in

reactor-scale, large-s̄ FRCs.
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APPENDIX A: Modified nonlinear delta-f scheme

When the marker distribution is chosen to be the same as the physical ion distribution func-

tion, i.e.,g = f , the particle weight can be expressed as

w = δf/f = 1− f0/f = 1− exp[(ε0 − ε(t))/T0], (A1)

where we have made use off(t) = f0(t0) = A exp(−ε0/T0) andf0(t) = A exp(−ε/T0), where

ε0 is the initial ion energy. It can be seen from Eq. (A1), that the particle weight can grow to large

(negative) values in the regions of phase space wheref is small compared tof0 (or equivalently,

when the particle energy is reduced compared to its initial value). It follows from Eq. (A1) that

values ofw are restricted by1− exp(ε0/T0) ≤ w < 1.

For particles from the tails of the Maxwellian distribution, the absolute value of the weight

can grow to∼ 104, provided the ion distribution function is significantly modified compared to

its initial form, and assuming that the cutoff velocity isvmax = 3vth. The growth of the particle

weights corresponds to sampling off0 with a small (insufficient) number of marker particles in the

regions of phase space wheref becomes very small. In the simulations, this effects can be seen at

relatively large amplitudes, when a small fraction of particles (say less than 0.1%) has large (neg-

ative) weight, which is several orders-of-magnitude larger than the average weight. This results

in a loss of accuracy, and can be manifest in the violation of numerical conservation properties,

including the conservation of the number of particles (δN =
∑

m wm = 0) and the total energy.

Since at large amplitudes the separation of the distribution function into known (equilibrium)

and perturbed parts does not provide an advantage, a numerical scheme that permits a switch to

the conventional PIC simulation method has been implemented. The hybrid (delta-f-PIC) scheme

can be expressed as a weighted average of delta-f and PIC methods

17



n = (1− λ)n0 +
∑
m

[(1− λ)wm + λpm]S(x− xm), (A2)

whereλ is a parameter (dependent on time or the perturbation amplitude), which allows us to

switch from the delta-f (λ = 0) to PIC (λ = 1) description, andp = f/g is an equilibrium

(constant) weight in the PIC simulations. A similar modification applies to the current density

calculation in Eq. (10). Note that Eq. (A2) does not require significant additional computations. It

provides a low-noise scheme at small amplitudes, and regular PIC accuracy and numerical noise

level at large amplitudes. The accuracy of the results can be analyzed by direct comparison with

PIC simulations for a test case.

An alternate approach to mitigate the accuracy loss of the delta-f scheme at large amplitudes

can be the choice ofg =const, so that the marker particles are loaded uniformly in phase space, and

w ∼ δf is always limited. In this case, however, the entire phase space needs to be sampled, which

results in a higher numerical noise level and poor resolution, unless the number of simulation

particles is significantly increased. The uniform sampling also produces large variations in particle

equilibrium weightspm ∼ exp(−ε0/T0). A somewhat better solution may be the use of a padded

equilibrium distribution function for numerical loading, i.e.,g = f + C, whereC is a small

constant, so that|w| is limited by∼ 1/C, and the regions of phase space wheref0 is finite are

always well sampled.

In the HYM code, the scheme given by Eq. (A2) has been implemented, and the convergence

of nonlinear results is validated by varying the form of theλ dependence on the perturbation

amplitude and increasing the number of simulation particles.
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FIGURE CAPTIONS

FIG.1. Normalized growth rates obtained in linear hybrid simulations of then = 1 tilt mode

instability for elliptic FRC equilibria with E=6.25 andPe = 0 (thin), and finitePe (thick). The

dashed line shows the empirical scaling in Eq. (11).

FIG.2. (a) Growth rates of then = 1, n = 2, andn = 3 modes plotted versus the1/s̄

parameter. Linear structure ofn = 2 mode; (b) contour plots of the axial velocity at the midplane

cross section; and (c) vector plot of the poloidal velocity in theR − z plane.

FIG.3. (a) Radial profiles of the ion toroidal flow velocity at the FRC midplane att = 46tA

andt = 80tA; and (b) contour plot ofVφ showing one-quarter of the cylinderr − z plane.

FIG.4. Time evolution of then = 0− 4 Fourier harmonics of the ion kinetic energy obtained

from hybrid simulations withE = 6.25 ands̄ = 2.4.

FIG.5. Contour plots of ion density in the poloidalr − z plane obtained from the simulations

shown in Fig. 4. Time is normalized to the Alfv´en time.

FIG.6 Vector plot of then = 0 component of the poloidal magnetic field att = 80tA obtained

from the simulations shown in Fig. 4.

FIG.7 (a) Time evolution of then = 0− 4 Fourier harmonics of the ion density perturbation;

and (b) contour plots ofδn at the toroidal cross section att = 60tA andt = 76tA.

FIG.8 (a) Contours of the axial magnetic field at the FRC midplane; and (b) surface plot of

the ion density att = 68tA obtained from nonlinear simulations withE = 6.25 ands̄ = 1.2.

FIG.9. (a) Time evolution of then = 0 − 4 Fourier harmonics of the ion kinetic energy

obtained from hybrid simulations withE = 4 and s̄ = 7.4; and (b) time evolution of the total

number of ions in the configuration.

FIG.10. Contour plots of the ion density in the poloidalr − z plane obtained from the simu-
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lations shown in Fig. 9. Time is normalized to the Alfv´en time.
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